p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.215C24, C24.202C23, C22.532+ 1+4, C4⋊D4⋊18C4, C23.23D4⋊9C2, (C2×C42).14C22, C23.14(C22×C4), C23.34D4⋊13C2, (C22×C4).480C23, (C23×C4).294C22, C22.106(C23×C4), C24.C22⋊9C2, C24.3C22⋊16C2, C23.63C23⋊9C2, C2.6(C22.32C24), (C22×D4).107C22, C2.20(C22.11C24), C2.C42.470C22, C2.6(C22.34C24), C4⋊C4⋊12(C2×C4), (C2×D4)⋊17(C2×C4), C2.18(C4×C4○D4), C22⋊C4⋊28(C2×C4), (C4×C22⋊C4)⋊33C2, (C22×C4)⋊26(C2×C4), (C2×C4⋊D4).17C2, (C2×C4).35(C22×C4), (C2×C4).517(C4○D4), (C2×C4⋊C4).184C22, C22.100(C2×C4○D4), (C2×C22⋊C4).430C22, SmallGroup(128,1065)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.215C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=db=bd, g2=c, faf-1=ab=ba, eae-1=ac=ca, ad=da, ag=ga, bc=cb, fef-1=geg-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, fg=gf >
Subgroups: 604 in 298 conjugacy classes, 136 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C23×C4, C23×C4, C22×D4, C22×D4, C4×C22⋊C4, C4×C22⋊C4, C23.34D4, C23.23D4, C23.63C23, C24.C22, C24.3C22, C2×C4⋊D4, C23.215C24
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C24, C23×C4, C2×C4○D4, 2+ 1+4, C4×C4○D4, C22.11C24, C22.32C24, C22.34C24, C23.215C24
(1 10)(2 39)(3 12)(4 37)(5 46)(6 18)(7 48)(8 20)(9 64)(11 62)(13 56)(14 29)(15 54)(16 31)(17 35)(19 33)(21 60)(22 25)(23 58)(24 27)(26 49)(28 51)(30 41)(32 43)(34 45)(36 47)(38 61)(40 63)(42 55)(44 53)(50 59)(52 57)
(1 26)(2 27)(3 28)(4 25)(5 54)(6 55)(7 56)(8 53)(9 52)(10 49)(11 50)(12 51)(13 48)(14 45)(15 46)(16 47)(17 41)(18 42)(19 43)(20 44)(21 40)(22 37)(23 38)(24 39)(29 34)(30 35)(31 36)(32 33)(57 64)(58 61)(59 62)(60 63)
(1 61)(2 62)(3 63)(4 64)(5 35)(6 36)(7 33)(8 34)(9 37)(10 38)(11 39)(12 40)(13 43)(14 44)(15 41)(16 42)(17 46)(18 47)(19 48)(20 45)(21 51)(22 52)(23 49)(24 50)(25 57)(26 58)(27 59)(28 60)(29 53)(30 54)(31 55)(32 56)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 43 28 17)(2 20 25 42)(3 41 26 19)(4 18 27 44)(5 23 56 40)(6 39 53 22)(7 21 54 38)(8 37 55 24)(9 31 50 34)(10 33 51 30)(11 29 52 36)(12 35 49 32)(13 60 46 61)(14 64 47 59)(15 58 48 63)(16 62 45 57)
(1 34 61 8)(2 30 62 54)(3 36 63 6)(4 32 64 56)(5 27 35 59)(7 25 33 57)(9 13 37 43)(10 45 38 20)(11 15 39 41)(12 47 40 18)(14 23 44 49)(16 21 42 51)(17 50 46 24)(19 52 48 22)(26 29 58 53)(28 31 60 55)
G:=sub<Sym(64)| (1,10)(2,39)(3,12)(4,37)(5,46)(6,18)(7,48)(8,20)(9,64)(11,62)(13,56)(14,29)(15,54)(16,31)(17,35)(19,33)(21,60)(22,25)(23,58)(24,27)(26,49)(28,51)(30,41)(32,43)(34,45)(36,47)(38,61)(40,63)(42,55)(44,53)(50,59)(52,57), (1,26)(2,27)(3,28)(4,25)(5,54)(6,55)(7,56)(8,53)(9,52)(10,49)(11,50)(12,51)(13,48)(14,45)(15,46)(16,47)(17,41)(18,42)(19,43)(20,44)(21,40)(22,37)(23,38)(24,39)(29,34)(30,35)(31,36)(32,33)(57,64)(58,61)(59,62)(60,63), (1,61)(2,62)(3,63)(4,64)(5,35)(6,36)(7,33)(8,34)(9,37)(10,38)(11,39)(12,40)(13,43)(14,44)(15,41)(16,42)(17,46)(18,47)(19,48)(20,45)(21,51)(22,52)(23,49)(24,50)(25,57)(26,58)(27,59)(28,60)(29,53)(30,54)(31,55)(32,56), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,43,28,17)(2,20,25,42)(3,41,26,19)(4,18,27,44)(5,23,56,40)(6,39,53,22)(7,21,54,38)(8,37,55,24)(9,31,50,34)(10,33,51,30)(11,29,52,36)(12,35,49,32)(13,60,46,61)(14,64,47,59)(15,58,48,63)(16,62,45,57), (1,34,61,8)(2,30,62,54)(3,36,63,6)(4,32,64,56)(5,27,35,59)(7,25,33,57)(9,13,37,43)(10,45,38,20)(11,15,39,41)(12,47,40,18)(14,23,44,49)(16,21,42,51)(17,50,46,24)(19,52,48,22)(26,29,58,53)(28,31,60,55)>;
G:=Group( (1,10)(2,39)(3,12)(4,37)(5,46)(6,18)(7,48)(8,20)(9,64)(11,62)(13,56)(14,29)(15,54)(16,31)(17,35)(19,33)(21,60)(22,25)(23,58)(24,27)(26,49)(28,51)(30,41)(32,43)(34,45)(36,47)(38,61)(40,63)(42,55)(44,53)(50,59)(52,57), (1,26)(2,27)(3,28)(4,25)(5,54)(6,55)(7,56)(8,53)(9,52)(10,49)(11,50)(12,51)(13,48)(14,45)(15,46)(16,47)(17,41)(18,42)(19,43)(20,44)(21,40)(22,37)(23,38)(24,39)(29,34)(30,35)(31,36)(32,33)(57,64)(58,61)(59,62)(60,63), (1,61)(2,62)(3,63)(4,64)(5,35)(6,36)(7,33)(8,34)(9,37)(10,38)(11,39)(12,40)(13,43)(14,44)(15,41)(16,42)(17,46)(18,47)(19,48)(20,45)(21,51)(22,52)(23,49)(24,50)(25,57)(26,58)(27,59)(28,60)(29,53)(30,54)(31,55)(32,56), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,43,28,17)(2,20,25,42)(3,41,26,19)(4,18,27,44)(5,23,56,40)(6,39,53,22)(7,21,54,38)(8,37,55,24)(9,31,50,34)(10,33,51,30)(11,29,52,36)(12,35,49,32)(13,60,46,61)(14,64,47,59)(15,58,48,63)(16,62,45,57), (1,34,61,8)(2,30,62,54)(3,36,63,6)(4,32,64,56)(5,27,35,59)(7,25,33,57)(9,13,37,43)(10,45,38,20)(11,15,39,41)(12,47,40,18)(14,23,44,49)(16,21,42,51)(17,50,46,24)(19,52,48,22)(26,29,58,53)(28,31,60,55) );
G=PermutationGroup([[(1,10),(2,39),(3,12),(4,37),(5,46),(6,18),(7,48),(8,20),(9,64),(11,62),(13,56),(14,29),(15,54),(16,31),(17,35),(19,33),(21,60),(22,25),(23,58),(24,27),(26,49),(28,51),(30,41),(32,43),(34,45),(36,47),(38,61),(40,63),(42,55),(44,53),(50,59),(52,57)], [(1,26),(2,27),(3,28),(4,25),(5,54),(6,55),(7,56),(8,53),(9,52),(10,49),(11,50),(12,51),(13,48),(14,45),(15,46),(16,47),(17,41),(18,42),(19,43),(20,44),(21,40),(22,37),(23,38),(24,39),(29,34),(30,35),(31,36),(32,33),(57,64),(58,61),(59,62),(60,63)], [(1,61),(2,62),(3,63),(4,64),(5,35),(6,36),(7,33),(8,34),(9,37),(10,38),(11,39),(12,40),(13,43),(14,44),(15,41),(16,42),(17,46),(18,47),(19,48),(20,45),(21,51),(22,52),(23,49),(24,50),(25,57),(26,58),(27,59),(28,60),(29,53),(30,54),(31,55),(32,56)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,43,28,17),(2,20,25,42),(3,41,26,19),(4,18,27,44),(5,23,56,40),(6,39,53,22),(7,21,54,38),(8,37,55,24),(9,31,50,34),(10,33,51,30),(11,29,52,36),(12,35,49,32),(13,60,46,61),(14,64,47,59),(15,58,48,63),(16,62,45,57)], [(1,34,61,8),(2,30,62,54),(3,36,63,6),(4,32,64,56),(5,27,35,59),(7,25,33,57),(9,13,37,43),(10,45,38,20),(11,15,39,41),(12,47,40,18),(14,23,44,49),(16,21,42,51),(17,50,46,24),(19,52,48,22),(26,29,58,53),(28,31,60,55)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2M | 4A | ··· | 4L | 4M | ··· | 4AD |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4○D4 | 2+ 1+4 |
kernel | C23.215C24 | C4×C22⋊C4 | C23.34D4 | C23.23D4 | C23.63C23 | C24.C22 | C24.3C22 | C2×C4⋊D4 | C4⋊D4 | C2×C4 | C22 |
# reps | 1 | 3 | 1 | 4 | 2 | 2 | 2 | 1 | 16 | 8 | 4 |
Matrix representation of C23.215C24 ►in GL8(𝔽5)
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 3 |
0 | 0 | 0 | 0 | 4 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(8,GF(5))| [0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,4,0,1,0,0,0,0,0,0,3,0,1,0,0,0,0,3,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,3,0,1],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0] >;
C23.215C24 in GAP, Magma, Sage, TeX
C_2^3._{215}C_2^4
% in TeX
G:=Group("C2^3.215C2^4");
// GroupNames label
G:=SmallGroup(128,1065);
// by ID
G=gap.SmallGroup(128,1065);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,568,758,219,675,136]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=d*b=b*d,g^2=c,f*a*f^-1=a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,a*g=g*a,b*c=c*b,f*e*f^-1=g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*g=g*f>;
// generators/relations